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Abstract— In critical applications, including search-and-
rescue in degraded environments, blockages can be preva-
lent and prevent the effective deployment of certain sens-
ing modalities, particularly vision, due to occlusion and the
constrained range of view of onboard camera sensors. To
enable robots to tackle these challenges, we propose a new
approach, Proprioceptive Obstacle Detection and Estimation
while navigating in clutter (PROBE), that instead utilizes the
robot’s proprioception to infer the presence or the absence
of occluded planar obstacles while predicting their dimensions
and poses in SE(2). As a novel vision-free technique, PROBE
simultaneously navigates in cluttered environments and detects
on the fly the presence and dimensions of unseen static/movable
obstacles entirely through physical contact interactions. PROBE
is a Transformer neural network that receives as inputs a
history of applied torques and sensed whole-body movements
of the robot and returns a parameterized representation of the
obstacles in the environment. The effectiveness of PROBE is
thoroughly evaluated on simulated environments in Isaac Gym
and a real Unitree Go1 quadruped. The project webpage can
be found at https://dhruvmetha.github.io/legged-probe/.

I. INTRODUCTION

In a completely dark room, humans can effectively nav-
igate through mechanical interactions with the fixed and
movable obstacles in their environments. Such navigation
tasks are realized entirely through contact force-based in-
teractive sensing and do not require other sensory inputs,
particularly visual ones. In the process, humans construct
a mental representation of the inferred objects, including
their dimensions and poses (in SE(2) for 2D navigation).
Such skills are essential when other sensory information is
unavailable, e.g., for visually impaired people or when there
is a blackout. In the same vein, simulating and modeling
objects on the fly is an important skill of autonomous robots
deployed in unconstrained and open environments, such as
those encountered in search-and-rescue (SAR) operations,
unmanned exploration missions, and debris removal [1]–
[5]. Such environments contain objects with diverse physical
properties, e.g., shapes and materials. Therefore, some level
of on-demand object property identification is a prerequisite
for executing navigation and other meaningful tasks.

State-of-the-art robots currently used for the aforemen-
tioned tasks are still tele-operated and far from fully au-
tonomous. To enhance their autonomy, especially in settings
where visual inputs are limited or damaged, robots need to
reconstruct a world model from a few images of the scene
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Fig. 1: The setup considered in PROBE involves a Go1 robot dog
and obstacles that can potentially obstruct its path. Some planar
obstacles, such as the long frontal box in the image, are movable,
while others are fixed to the ground. A transformer network
reconstructs the locations and sizes of the obstacles, including the
occluded ones, from a history of proprioceptive data that the robot
receives while exploring the scene without vision.

taken after applying certain manipulation and locomotion
actions, such as poking and stepping. The inferred models
of the objects can then be used to plan safe paths that
avoid obstacles and to control the positions and orienta-
tions of the objects while moving them or using them as
tools. Inferring the shapes of objects in cluttered scenes is
extremely challenging because of occlusions, which only
permit a partial view of the surrounding environment. For
instance, in a degraded environment, objects can be hidden
behind rubble and thus cannot be observed directly. Visual
input may also be extremely limited or impossible in certain
critical situations, such as navigating through dense smoke.

This work addresses the problem of partial scene re-
construction for a legged robot using only proprioception
data. We consider a setup (Fig 1) where a legged robot is
deployed in an unknown environment and tasked to navigate
to a target location without having access to vision. A
learned high-level policy generates desired velocities for the
robot, unaware of any obstacles present in the environment,
and a learned low-level controller translates them into joint
positions. A Transformer-based Obstacle Prediction Mod-
ule (ORM) receives as inputs the history of the robot’s
commands, its joint positions, joint velocities, and torques
at each time-step. It returns a reconstructed environment
representation at each time-step, which is gradually fine-
tuned as the robot navigates in its environment. Using only
proprioceptive feedback, the ORM can predict the existence
of planar obstacles and their 2D dimensions and positions. In
addition, the ORM can also detect whether the encountered
obstacles are fixed or movable, and in the latter case, if
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there are other obstacles hidden behind, and what their
properties are. The capability to sense objects hidden behind
movable large objects cannot be attained through vision.
Moreover, the high-level navigation policy can clear its path
by moving some obstacles and creating new collision-free
routes, unlocking more regions to explore.

In summary, this work brings forth the following main
contributions:

• We constructed a novel system, PROBE, capable of rapidly
predicting an actionable representation of the robot’s envi-
ronment using only the history of a robot’s proprioceptive
states in that environment, without any vision sensors,

• We developed a fully integrated active 2D scene re-
construction method combining the map-predicting trans-
former with navigation policies and low-level controllers
trained in simulation through reinforcement learning, and

• We performed a comprehensive empirical study of the
proposed PROBE system in simulation and on a real
quadruped, demonstrating the effectiveness of PROBE.

II. RELATED WORK

Object/Scene Reconstruction. The problem of predicting
the pose and shape of objects has been largely studied in
computer vision and robotics [6]–[10]. Most of these works
are concerned with volumetric shape completion for partially
occluded objects using RGB-D images [7], [10]. A classical
physics-based method is used in [6] to infer the 3D shapes of
occluded objects in clutter based on their observed motions
and mutual interactions. This approach performs searches in
a large space of shapes and suffers a high computational
cost. Other works focus on scene reconstruction from force
sensing [11]. An algorithm is presented in [11] to simul-
taneously reconstruct the geometry of an unknown object
and its environment via physical interactions and force and
torque measurements. This algorithm was developed for
object grasping and manipulation, and does not deal with
nested object interactions considered in our problem setup.

Contact Sensing. Scene reconstruction from sensed forces
often depends on identifying the contact location from force
measurements. Earlier attempts to solve this problem were
based on solving the force-moment balance and the surface
equation while assuming a soft finger and a convex shape of
the contacted object [12]. These assumptions were relaxed
in subsequent works [13], [14]. Some works addressed the
problem of locating contact points on manipulators [15],
which is closer to our present work on legged robots.

Mapping and Navigation. Simultaneous localization and
mapping (SLAM) is the problem of building a map of a
mobile robot’s unknown environment while localizing the
robot in the constructed map. This problem is extensively
studied in mobile robotics, with most solutions requiring
visual inputs in the form of RGB or Lidar images [16]–[18].
In this paper, we study a variant of the Blindfolded Traveler’s
Problem introduced in [19], defined as the problem of
robot motion planning under uncertainty where the only
observations are through contact with the environment. The

proposed solutions assume rigid and fixed obstacles [20]–
[22], which is different from our setup which contains both
fixed and movable obstacles.

Legged Robot Navigation. Most recent works on legged
robot navigation rely on adaptive learning techniques to con-
trol the robot and to navigate through difficult terrains [23].
An end-to-end learned controller was trained in simulation
via reinforcement learning (RL) to respond robustly to dis-
turbances and was transferred to the real world in [24].
Proprioceptive feedback to ensure the safety of the planned
paths by sensing unexpected obstacles was also used within
an RL framework in [25] to develop a point-goal navigation
system for legged robots. Our proposed approach is related
to the rapid motor adaptation (RMA) algorithm proposed
in [26] to solve the problem of real-time online adaptation
in quadruped robots. RMA comprises a base policy and
an adaptation module trained in simulation on a varied
terrain generator using bioenergetics-inspired rewards. A key
difference between our work and the previous ones is the
ability of our robot to infer 2D poses of occluded obstacles
based on proprioceptive feedback alone, which other robot
systems can use for downstream tasks, e.g. planning obstacle-
free paths for navigation.

III. PROBLEM AND ENVIRONMENT SETUP

Problem. We address the two-fold problem of:
I Navigation in clutter. A legged robot is tasked to negotiate

a 2D workspace and reach a goal region (Fig. 2) without
visual inputs. The environment contains varying numbers
of rectangular obstacles that are either mobile (e.g., mov-
able by pushing) or immobile. The locations and sizes of
the obstacles in the environment are unknown a priori.

II Obstacle Prediction. While navigating, the robot manip-
ulates or comes into contact with a subset of the obsta-
cles in its workspace. Given the robot’s proprioceptive
state history, the environment is partially reconstructed,
by predicting the locations, sizes, and mobility of the
obstacles it has encountered, either directly, or indirectly
through nested interactions. Nested interactions refer to
cases when the robot pushes a moving obstacle, which in
its turn pushes a second obstacle that is hidden behind it.

Robotic Platform. This work uses the Unitree Go1-EDU
legged robot. The robot’s locomotion is obtained by control-
ling its twelve joints. The proprioception signal at time-step
t is defined as st = {(qi, q̇i, τi)}12i=1, where (qi, q̇i) are the
position and velocity of joint i, and τi is the torque applied on
joint i. The pose and velocity of the robot at time t is denoted
by ρt = (xt, yt, θt) and ρ̇t = (ẋt, ẏt, θ̇t), where (xt, yt, θt) ∈
SE(2) is the 2D translational and rotational transformations
w.r.t. the robot’s initial position A, and (ẋt, ẏt, θ̇t) are the
linear and angular velocity components.

Both movable and static obstacles are placed randomly in
the workspace and have unknown friction, mass, and sizes.
PROBE’s scene estimation module represents each obstacle
as a tuple Oi = (Istatic

i , xi, yi, θi, wi, li). The binary variable
Istatic
i indicates whether the obstacle is static (1) or movable

(0). (xi, yi, θi) ∈ SE(2) defines the pose of the obstacle



Fig. 2: (Left) Environment setup in reality (top) and simulation (bottom), best viewed in color. The robot’s workspace is bounded in a box of dimensions
wenv × lenv, and the goal region (purple) is defined as the set of all locations that satisfy {x > K}, i.e., all locations that are beyond K meters in the
direction of the robot’s initial orientation. The yellow long obstacle is movable, while the red obstacle is static. The robot has to move the yellow box
in front of it to reach the goal region. (Middle-Right) A hierarchical control policy is executed to navigate the robot so it may explore the environment’s
properties and successfully reach the goal region. Concurrently, the proposed obstacle reconstruction module (ORM) is a Transformer neural network that
uses localization and proprioception history from the robot to predict object position and dimensions through interaction.

relative to the robot’s initial position A (typically the origin),
and (wi, li) defines the box’s width and length respectively.
The set of all obstacles in the environment with N obstacles
is denoted as O = {Oi}Ni=1.

IV. PROPOSED METHOD

PROBE (Fig. 2) is a learning-based pipeline for legged
robots that integrates (a) a low-level controller πloc for
locomotion with a trotting gait; (b) a navigation policy πnav
tasked to provide obstacle-uninformed, goal-directed guid-
ance to πloc in a cluttered environment, and (c) a transformer-
based obstacle reconstruction module (ORM) that predicts
the obstacle’s key properties at every time-step, given the
history of the robot’s proprioceptive data collected while
navigating the environment.

A. Low-level Locomotion Controller

The locomotion controller employs πloc, a neural network
policy trained in an obstacle-free environment using Prox-
imal Policy Optimization (PPO) [27]. It is an extension of
the prior work [28]. The locomotion controller πloc tracks
velocity and gait commands, enabling the robot to walk at
desired speeds while maintaining a commanded gait. The
velocity commands vdes are specified within the robot’s
SE(2) frame. Gait commands, denoted as b, include the
robot’s stepping frequency, body height, and stance. The
input observations oloc to the policy are the gravity vector
g in the robot’s frame, the robot’s proprioceptive states –
joint positions q, joint velocities q̇, the previous action taken
aloc

prev, and a latent physics parameter zphys. The commands
c = (vdes, b) are also provided as input. The output action aloc

is the target joint position for each of the robot’s joints. These
target joint positions are converted to joint torques τ using
the robot’s built-in PD controller. πloc uses a student-teacher
framework [26], to adapt to different environment conditions
as encoded in zphys. In summary, the neural-network policy
πloc returns the following action at each time t:

aloc
t = πloc(gt, qt, q̇t, z

phys
t , aloc

t−1; ct).

B. High-level Navigation Policy

A navigation policy πnav is trained using PPO in cluttered
corridors to provide a sequence of velocity commands vdes =
(vx, vy, vω) ∈ R3 to the low-level controller πloc so that the
robot successfully navigates from its initial position to the
goal region. The commanded gait b is fixed to a trotting
gait due to its simplicity and stability. πnav takes as input a
history H of observations onav and outputs a desired velocity
command vdes. The observation contains the SE(2) pose
of the robot ρ, the robot’s velocity vector (ẋ, ẏ), and the
previous action vdes

prev output from the policy. At any time-
step t, the high-level navigation policy outputs:

vdes
t = πnav(⟨ρt, ẋt, ẏt, v

des
t−1⟩tt−H).

The history H of observations enables the policy to interpret
and remember interactions with the obstacles, which in
turn aids in navigation. The reward function fuses (a) goal
reaching reward: a sparse reward for the robot on reaching
the goal region; (b) distance penalty: a penalty on the robot’s
distance from the goal region; (c) time penalty: incurred for
every control step the robot does not reach the goal; (d) wall
collision penalty: when the robot gets close to the walls; (e)
heading penalty: if the robot’s heading angle is beyond the
threshold θthresh with respect to its initial heading.

C. Dataset Curation

The Obstacle Reconstruction Module (ORM) is trained on
a dataset collected by running the navigation policy πnav in a
randomly generated simulation environment (see Sec. V for
details). The execution is terminated when the robot reaches
the goal region, or after Tmax time-steps. We use tgoal to
denote the time-step when the goal is reached. The robot’s
proprioceptive state s and pose ρ, as well as the obstacles
states O, are recorded at every time step. We define a trajec-
tory γ = {st, ρt,Ot}t=T

t=0 as a sequence of observations, T =
min(tgoal, Tmax). A dataset D is a collection of trajectories γj
under M different navigation policies πi

nav, i ∈ {1, 2, ..,M}
in randomly generated cluttered environments.

Multiple sources of bias may arise in collecting D:



Fig. 3: Given as input a sequence of the robot’s joint positions, velocities, applied torques, and poses (Top), the Obstacle Reconstruction Module (ORM,
middle) is a Transformer-based neural network that outputs the sizes and poses for the different movable (ground truth visualized in yellow) and static
(ground truth visualized in red) obstacles in the scene (Bottom, best viewed in color). The robot is The reconstructions for the movable and static obstacles
are visualized in orange and blue, respectively, and their corresponding Rotated Intersection Over Union (See: Section V-C) values are reported. Higher
values represent more accurate reconstructions.

Navigation policy bias. In an environment with multiple
homotopic paths, πnav may be biased towards a single ho-
motopy class (e.g., trajectories that favor the right-hand side
of the environment). This may lead to recorded trajectories
having limited robot-obstacle interactions.
Early termination bias. In different trajectories, the robot
interacts with different numbers of obstacles in the scene.
The trajectories collected from randomly generated environ-
ments are not uniformly divided with respect to the obstacle
interaction modes, leading to an unbalanced dataset. For
example, trajectories terminate faster in an environment with
a single movable obstacle than in environments with multiple
obstacles, increasing the number of trajectories recorded for
the former.
Contact mode bias. Each trajectory can be categorized into
different contact modes, e.g., no contact with any obstacle,
direct contact with a static obstacle, or direct contact with
a movable obstacle, and indirect contact with the static
obstacle. Imbalances between the modes can lead to bias.

To ensure a high-quality dataset, the curation procedure
collects trajectories from M different navigation policies to
help cover multiple possible homotopic classes, increasing
the diversity of interactions with the obstacles. Pruning
trajectories based on contact mode frequency helps mitigate
the early termination and contact mode biases.

D. Obstacle Reconstruction Module (ORM)

ORM is a neural network consisting of a causal Trans-
former encoder [29] followed by a fully-connected MLP

decoder that predicts a sequence of obstacle parameters
for reconstruction from a sequence of proprioception inputs
(Fig 3). This network is trained on sequences (trajectories) in
D. Its input is a sequence of proprioception data (st, ρt)

T
t=0 –

joint positions, joint velocities, torques applied on the joints,
and the robot pose in the world frame. For any sequence, let
time-step tfirst

i represent the first contact on Oi and tlast be the

time-step of the last contact the robot makes with any of the
obstacles in O. The contact window for an obstacle is thus
defined as ∆con

i = [tfirst
i , tlast]. The obstacle parameters Oi

(see Section III) are modified to include its contact window
for the sequence, Õi = (Icontact

i , Istatic
i , xi, yi, θi, wi, li). The

binary variable Icontact
i indicates whether the obstacle is in

its contact window (1), i.e. if the robot is currently pressing
on the obstacle, or not (0). The module returns as output
{Õt}t=T

t=0 , where Õt = {Õt,i}i=n
i=1 , n is the number of

obstacles in the scene and the prediction at time-step t is
a function of only the history of inputs up to time-step t in
the sequence. The segments of the output sequence not in the
contact window for each obstacle are masked, so the network
learns only during the contact windows. Contact windows
contain rich contact information for obstacle prediction.

The training loss for ORM is a combination of scaled
binary cross-entropy BCE losses and a mean squared error
MSE supervised learning objective. The loss function for a
single sequence with n ≤ N interacted obstacles is:

L =

n∑
i=1

1

|∆con
i |

tlast∑
t=tfirst

i

[α1 BCE(Icontact
t,i , Îcontact

t,i )

+ α2 BCE(Istatic
t,i , Îstatic

t,i )

+ α3 MSE((xt,i, yt,i, θt,i), (x̂t,i, ŷt,i, θ̂t,i))

+ α4 MSE((wt,i, lt,i), (ŵt,i, l̂t,i))].

E. System Integration

1) Offline Training: Locomotion policy πloc is first trained
using PPO to follow velocity and gait commands. Once
trained, πloc is used only in inference mode with a fixed gait
for navigation. M navigation policies πi

nav, i ∈ {1, 2, ...,M}
are then trained using PPO in unknown cluttered envi-
ronments while using the low-level control policy πloc. A
balanced dataset D of trajectories is then curated using the



different navigation policies in randomly generated cluttered
environments. The ORM is then trained with a supervised
objective to partially reconstruct the environments using only
proprioception data.

2) Online Inference: The first part of the two-fold prob-
lem described in Section III is addressed using proposed
policies πnav and πloc for navigation and locomotion, re-
spectively. Navigating through environments with unknown
obstacles, πnav operates in inference mode, internally com-
manding πloc for robot locomotion. Each control step of
the navigation process captures and records the robot’s
proprioception state in a sequence, preserving a complete
history from the trajectory’s start. This sequence feeds into
the ORM, enabling partial, on-the-fly scene reconstruction.
This proposed approach addresses the second part of the two-
fold problem, providing an innovative method for real-time
2D-scene understanding during navigation.

V. EXPERIMENTS

A. Environment Setup

We use in our experiments a 12 DoF Unitree Go1-EDU
quadruped that starts at one end of a walled 4m×2m corridor.
The goal is located near the other end of the corridor, 3m
away from the robot’s initial position. Offline, during train-
ing, obstacles Oi, i ∈ [1, Nmax], are generated in IsaacGym
by first sampling the physical properties for each obstacle
from a range of values, which are detailed in the appendix.
The obstacles are then placed in random SE(2) configurations
with their orientations fixed to 0 with respect to the robots
initial orientation. This may or may not block the path(s) to
the goal. When Nmax ≥ 2 the movable obstacle is placed
in front of one or more static obstacles. No obstacles are
spawned in the goal region. Domain randomization of the
obstacle’s physical parameters aims to reduce the sim2real
gap of both the navigation policy and the obstacle prediction
module (ORM).

Fig. 4: Examples of Easy (Left), Medium (Middle) and Hard (Right) simu-
lated (top) and real-world (bottom) scenarios considered in the evaluation.

Online, during the evaluations, the environments are cat-
egorized into easy, medium and hard with respect to the
navigation task, where the number of obstacles N in each is
set to 1, 2, and 3 respectively. In the easy environments, the
robot may only directly interact with the obstacle, whereas,
in the medium and hard environments, the robot may have
both direct and indirect obstacle interactions.

B. Training Details

Policies The locomotion and navigation policies, πloc and
πnav, are trained on 4096 parallel IsaacGym environments
for 30K and 1K iterations, respectively. πloc is trained to
follow velocity commands in the range [−0.4, 0.4]m/s at
a step frequency of 50Hz. Outside this range, the robot
is prone to falling when interacting with obstacles while
executing πnav. The input to πnav is the history of observations
and actions, where the history is a moving window with a
maximum length of H = 30s and the maximum episode
length Tmax = 60s. πnav provides commands to πloc at a
step frequency of 25Hz. For better sim-to-real transfer of
πnav, the robot parameters are randomized during training,
as detailed in the appendix. Multiple versions of πnav are
trained on different seeds using different combinations of
reward functions mentioned in Section IV-B.
Obstacle Reconstruction Module ORM is trained on a
dataset D of 180K trajectories curated from three different
navigation policies πi

nav, i ∈ {1, 2, 3}. The maximum number
of obstacles spawned in the environment Nmax = 3. The
Transformer Encoder comprises four self-attention blocks
with two attention heads each, followed by a two-layer MLP
decoder. The inputs to the network are projected to learnable
embedding of 512 dimensions with positional information.
This network is trained for 20 epochs on an NVIDIA RTX
A4500 with 20GB of GPU memory.

C. Evaluation Metrics

The following metrics measure the accuracy of the ORM’s
obstacle parameter predictions relative to the ground-truth.
These metrics are calculated for each obstacle Oi indepen-
dently at the final time-step tfinal in the contact time window
∆con

i (See Section IV-D).
Rotated Intersection over Union (IoU) evaluates how
well the predicted obstacle representation overlaps with the
ground-truth. For a single obstacle Oi at time-step t, it is
defined as,

IoU(Ot
i , Ôt

i) =
Area(Geom(Ot

i) ∩ Geom(Ôt
i))

Area(Geom(Ot
i) ∪ Geom(Ôt

i))
,

where Geom(Oi) represents the geometry of the obstacle
Oi in the workspace. The IoU for obstacle Oi at the final
time-step tfinal in the contact window ∆con

i is defined as
IoUfinal

i = IoU(Otfinal
i , Ôtfinal

i ).
Absolute Error For each obstacle oi at time-step t, we report
two types of absolute errors with respect to the ground-
truth. Obstacle pose error is the the absolute error of the
predicted SE(2) pose of the obstacle. Obstacle shape error is
the absolute error for the length of the obstacle. The absolute
error at the final time-step tfinal in the contact time window
∆con

i is defined as Efinal
i = |Otfinal

i − Ôtfinal
i |. It corresponds to

the individual absolute errors in the position of the object in
each axis, in its rotation, and length.



Fig. 5: An example execution of PROBE with a real Unitree Go1, best viewed in color. (Top) Snapshots of the experiment at different timestamps. (Bottom)
Obstacle reconstruction returned by PROBE. As the experiment progresses, the robot (green) comes into direct contact with the movable obstacle (ground
truth pose in yellow) and indirect contact with the static obstacles (ground truth poses in red). The predictions during the contact window for the movable
and static obstacles are visualized in orange and blue, respectively.

Category Type
Metrics

IOU ↑ Pose Errors ↓
Shape ↓

x y θ

Easy
Movable 0.473 0.135 0.101 0.198 0.183

Static 0.501 0.087 0.104 - 0.172

Medium
Movable 0.496 0.115 0.095 0.201 0.162

Static 0.331 0.430 0.169 - 0.186

Hard
Movable 0.481 0.128 0.108 0.214 0.172
Static 1 0.432 0.091 0.138 - 0.117
Static 2 0.404 0.094 0.151 - 0.120

TABLE I: Quantitative results evaluating the proposed method in simulation.
Performance outcomes are averaged across 10 independent trials on 100
Easy, Medium, and Hard benchmarks that each contain Nmax = 1, 2, 3
obstacles, respectively.

VI. RESULTS

A. Simulation Results

Table I reports evaluations of the ORM using the afore-
mentioned metrics on 10 independent trials of 100 Easy, 100
Medium and 100 Hard benchmarks. Across the benchmarks,
the ORM returns a reasonably accurate estimation of the
geometry of the obstacles evidenced by the average IoU at
the end of the robot’s contact. In Medium scenarios with a
static obstacle, the robot may not be in direct or indirect con-
tact with the static obstacle for a sustained time-period while
completing the navigation task. Thus, the IoU reported in this
case is relatively lower for the static obstacle. The reported
reconstruction for the movable obstacle is surprisingly more
accurate in the Medium and Hard scenarios. The reason is
that the robot is in direct contact with the obstacles for longer
in the Medium and Hard benchmarks, which leads to more
accurate predictions. The static obstacle’s measured IoU is
higher in the Hard benchmark than the Medium benchmark
because there is a higher chance of direct interaction with
one or the other static obstacle while navigating. The absolute
errors further emphasize the trend observed in the IoU. Since
the orientation of the static obstacles is fixed across the
different benchmarks, their orientation error is omitted.

B. Real Robot Results

Table II evaluates the ORM on independent trials of 20
Easy, 20 Medium and 5 Hard benchmarks, recorded in
the real-world setup. For each independent trial, a different
navigation policy is uniformly sampled from {πi

nav}i=3
i=1.

The results from the real-world trials confirm the trends

Category Type
Metrics

IOU ↑ Pose Errors ↓
Shape ↓

x y θ

Easy
Movable 0.271 0.495 0.151 0.333 0.341

Static 0.449 0.095 0.162 - 0.099

Medium
Movable 0.277 0.340 0.195 0.407 0.303

Static 0.212 0.185 0.230 - 0.225

Hard
Movable 0.371 0.203 0.106 0.182 0.282
Static 1 0.210 0.295 0.408 - 0.192
Static 2 0.198 0.220 0. 494 - 0.157

TABLE II: Quantitative evaluation of PROBE on the real robot. Performance
outcomes are averaged across 10 independent trials with a movable obstacle
and 10 trials with a static obstacle in the Easy category, followed by 20 trials
with both obstacles in the Medium category, and 5 trials with three obstacles
in the Hard Category.

observed in the simulation trials. However, multiple factors
contribute to a certain decline in the measured metrics – the
physical properties of the obstacles, e.g., mass, friction, and
restitution, are assumed to be uniformly distributed across
the obstacle geometry in simulation, but this is not the case
in the real-world setup. The real-world obstacles are also not
perfectly box-shaped, contributing to a distribution mismatch
between the obstacles and the robot compared to those in the
simulation. The Hard benchmark contains trajectories that
have very minimal direct interaction with the static obstacles
in the environment and this reflects in the measured IoU.
This is comparable to the evaluated IoU for the Medium
benchmark.

C. Qualitative Case Study

Fig 5 showcases an example execution of PROBE from a
real robot trial on a Hard benchmark. The robot makes first
contact with the movable obstacle at t = 2s and returns an



initial estimate of its pose and shape. At t = 8s, πnav directs
the robot to the other end of the movable box, creating an
opening. As the robot continues pushing the movable box,
it enables the ORM to hypothesize about a possible static
obstacle at t = 10.4s. When the movable box can no longer
be pushed at around t = 12s, the ORM reconstructs the
second static obstacle nested behind the first one. However,
since it does not have enough information about how it has
manipulated the movable obstacle, the corresponding IoU
decreases. The final reconstructions are obtained at the end
of the contact window (t = 14s).

D. Ablation Study

Fig. 6: A: {q}, B: {q, q̇}, C: {q, q̇, τ}, D: {q, q̇, τ, ρ}, E: {τ, ρ}. The plots
show an ablation study on the ORM. The ORM trained with different inputs
affects the reconstruction performance measured with the IoU metric.

Fig 6 evaluates the importance of the different inputs
provided to the ORM using the IoU metric on the same
evaluation dataset as Table I. For the ablation study the
ORM is trained on environments with Nmax = 2. The
networks A,B,C,D receive as input the history of joint
positions q, joint velocities q̇, commanded joint torques τ ,
and the robot pose ρ incrementally. Network E receives
as input only the commanded joint torques and the robot’s
pose. For the movable obstacles, whose features are indi-
cated by the changes in the robot’s pose relative to the
commanded joint torque, networks D and E perform best
in accurately reconstructing them. The IoU of the static
obstacles displays a marked improvement when the joint
torques are introduced as input. Removing the joint position
and velocity information significantly declines reconstruction
performance, emphasizing their importance.

VII. CONCLUSION

Robots that navigate unknown environments must recon-
struct their environments in simulation to plan their actions
accordingly. PROBE is a novel method for 2D scene re-
construction for legged robots deployed in such environ-
ments. While standard reconstruction methods rely on vision,
PROBE uses only a history of proprioceptive data. This
sensing modality is useful in dark places where vision is
impaired, such as those encountered in search and rescue
missions or when obstacles are partially or fully occluded.
PROBE employs a transformer-based obstacle reconstruction
module to map the history of proprioceptive data into an

encoded representation of the obstacles in the environment.
The network is trained in simulation, and experiments are
carried out to evaluate the proposed framework in simulation
and with a real Unitree Go1 robotic dog and objects. The
evaluation indicates that PROBE can not only detect object
locations and sizes but also whether they are movable or
static. It can also detect fully occluded objects by interacting
with the occluding frontal objects.

However, PROBE has some limitations worth investigating
in future works. Firstly, all experiments were conducted
in environments that contained only box-shaped objects. It
would be interesting to test PROBE on other forms of objects.
Furthermore, PROBE was not tested on identifying other
physical properties of objects beyond their geometries and
whether they are movable. Finally, combining PROBE with
reconstruction methods that rely on other modalities, such as
touch sensing, would be interesting.

APPENDIX

A. Domain Randomization Parameters

Paramters Ranges

Robot

Added Mass (in Kg) [-1.0, 3.0]
Center of Mass Offset [− 0.15, 0.15]

Motor Strengths [0.9, 1.1]

Motor Offsets [− 0.02, 0.02]

Environment
Ground Friction [0.05, 4.0]
Ground Restitution [0.0, 1.0]

Obstacle

Mass (in Kg) [0.5, 1.5]
Friction [0.5, 1.2]

Restitution [0.0, 0.1]

Sizes - Movable (in m) [0.3, 1.8]

Sizes - Fixed (in m) [0.3, 1.0]

TABLE III: Ranges of domain parameters used while training and executing
inference on πnav for curating the dataset D.
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