
PROBE: Proprioceptive Obstacle Detection and Estimation
while Navigating in Clutter

Dhruv Metha Ramesh, Aravind Sivaramakrishnan, Shreesh Keskar,
Kostas E. Bekris, Jingjin Yu, Abdeslam Boularias

Abstract— In critical applications, including search-and-
rescue in degraded environments, blockages can be preva-
lent and prevent the effective deployment of certain sens-
ing modalities, particularly vision, due to occlusion and the
constrained range of view of onboard camera sensors. To
enable robots to tackle these challenges, we propose a new
approach, Proprioceptive Obstacle Detection and Estimation
while navigating in clutter (PROBE), which instead relies only
on the robot’s proprioception to infer the presence or the
absence of occluded rectangular obstacles while predicting their
dimensions and poses in SE(2). The approach is a Transformer
neural network that receives as input a history of applied
torques and sensed whole-body movements of the robot and
returns a parameterized representation of the obstacles in
the environment. The effectiveness of PROBE is evaluated on
simulated environments in Isaac Gym and with a real Unitree
Go1 quadruped robot. The project webpage can be found at
https://dhruvmetha.github.io/legged-probe/.

I. INTRODUCTION

In a dark environment, humans can effectively navigate
by relying on mechanical interactions with the fixed and
movable obstacles present. During such navigation tasks,
humans construct in real-time a mental representation of
these objects, including their dimensions and poses, entirely
through contact force-based interactive sensing. Similarly,
modeling the movability of objects on the fly is an important
skill for autonomous robots deployed in unconstrained and
open environments, such as those encountered in search-and-
rescue (SAR) operations, unmanned exploration missions,
and debris removal [1]–[5]. Such environments can contain
objects with diverse physical properties in terms of shape
and materials. Therefore, some level of on-demand object
property identification can help guide navigation and other
meaningful tasks.

Inferring the shapes of objects in cluttered scenes is
extremely challenging because of occlusions, which only
permit a partial view of the surrounding environment. For
instance, in a degraded environment, objects can be hidden
behind rubble and thus cannot be observed directly. Visual
input may also be extremely limited or impossible in certain
critical situations, such as navigating through dense smoke.

This work addresses the problem of partial scene recon-
struction for a legged robot using only proprioception data.
We consider a setup (Fig 1) where a legged robot is deployed
in an unknown environment and tasked to navigate to a target

The authors are with the Department of Computer Science,
Rutgers University, NJ, USA. Corresponding author e-mail:
dhruv.metha@rutgers.edu.

Fig. 1: The setup considered in PROBE involves a Go1 robot dog
and obstacles that can potentially obstruct its path. Some planar
obstacles, such as the long frontal box in the image, are movable,
while others are fixed to the ground. A transformer network
reconstructs the locations and sizes of the obstacles, including the
occluded ones, from a history of proprioceptive data that the robot
receives while exploring the scene without vision.

location without access to visual inputs. A learned high-
level navigation policy generates desired velocities for the
robot, unaware of any obstacles present in the environment,
and a learned low-level locomotion controller translates them
into joint positions. A Transformer-based Obstacle Predic-
tion Module (ORM) receives as inputs the history of the
robot’s commands, its joint positions, velocities, and torques
at each time-step. It returns a reconstructed environment
representation at each time-step, which is gradually fine-
tuned as the robot navigates in its environment. Using only
proprioceptive feedback, the ORM can predict the existence
of planar rectangular obstacles, their 2D dimensions and
positions. In addition, the ORM can detect whether the
encountered obstacles are fixed or movable, and in the latter
case, further detect other obstacles hidden behind, and what
their properties are. The capability to sense objects hidden
behind movable large objects cannot be attained through
vision. This information can enable the robot to use a
high-level reasoning framework to navigate among movable
objects [6] by clearing the path unlocking regions to explore.

In summary, this work brings forth the following main
contributions:

• The construction of a novel neural architecture, PROBE,
capable of rapidly predicting an actionable representation
of the robot’s environment using only the history of a
robot’s proprioceptive states during navigation in that
environment, without any vision sensors, and

• A comprehensive empirical study of the proposed PROBE
system in simulation and on a real quadruped, demon-
strating the effectiveness of PROBE.

https://dhruvmetha.github.io/legged-probe/


II. RELATED WORK

Object/Scene Reconstruction has been extensively stud-
ied using vision-based methods that rely on RGB-D images
for volumetric shape completion of partially occluded ob-
jects [7], [8]. To infer 3D shapes in clutter without vision,
prior physics-based methods like [9] perform computation-
ally expensive searches over large shape spaces based on
their observed interactions. The proposed ORM can rapidly
predict planar obstacle properties directly from propriocep-
tive data, circumventing intensive computations. Other works
focusing on scene reconstruction from force sensing [10] do
not deal with nested object interactions considered in this
paper’s problem setup.

Contact Sensing is crucial for scene reconstruction from
force measurements. Early attempts solve the force-moment
balance and surface equations while assuming a soft fin-
ger and convex shape of the contacted object [11]. These
assumptions were relaxed in subsequent works [12], [13].
Some works addressed the problem of locating contact points
on manipulators [14], which is closer to the presented work
on legged robots.

Mapping and Navigation involves building a map of
a mobile robot’s unknown environment while the robot is
navigating an environment. The simultaneous localization
and mapping (SLAM) problem is extensively studied in
mobile robotics, with most solutions requiring visual inputs
in the form of RGB or LIDAR images [15]–[17]. In this
paper, the robot navigates under uncertainty, only observing
the environment through contact, a variant of the Blindfolded
Traveler’s Problem [18]. Proposed solutions assume rigid
and fixed obstacles [19]–[21], which is different from our
setup, which contains both fixed and movable obstacles.

Legged Robot Navigation. utilizes proprioceptive feed-
back on adapting locomotion control on challenging ter-
rains in real-time [22]–[24]. Unlike methods that implicitly
encode environmental conditions, the proposed approach
leverages proprioception to reconstruct the environment by
inferring the presence and properties of obstacles. This
shifts the use of proprioception from internal adaptation to
external environment mapping, addressing a different aspect
of autonomous navigation in complex environments.

III. PROBLEM AND ENVIRONMENT SETUP

We address the problem of Obstacle Prediction while nav-
igating in clutter. A legged robot negotiates a 2D workspace
to reach a goal region (Fig. 2) without visual inputs. The
environment contains varying numbers of box-shaped ob-
stacles that are either mobile (e.g., movable by pushing) or
immobile. The locations and sizes of the obstacles in the
environment are unknown a priori. While navigating, the
robot manipulates or comes into contact with a subset of the
obstacles in its workspace. Given the robot’s proprioceptive
state history, the environment is partially reconstructed by
predicting the locations, sizes, and mobility of the obstacles it
has encountered, either directly or indirectly, through nested
interactions. Nested interactions refer to cases when the robot

pushes a moving obstacle, which in turn pushes a second
obstacle that is behind it.
Robotic Platform. This work uses the Unitree Go1-EDU
legged robot. Locomotion is performed by controlling its
twelve joints. The proprioception signal at time-step t is
st = {(qi, q̇i, τi)}12i=1, where (qi, q̇i) are the position and
velocity of joint i, and τi is the torque applied on joint i. The
pose and velocity of the robot at time t is ρt = (xt, yt, θt)
and ρ̇t = (ẋt, ẏt, θ̇t), where (xt, yt, θt) ∈ SE(2) is the 2D
translational and rotational transformations w.r.t. the robot’s
initial position A, and (ẋt, ẏt, θ̇t) are the linear and angular
velocity components.

Both movable and static obstacles are placed randomly in
the workspace and have unknown friction, mass, and sizes.
PROBE’s scene estimation module represents each obstacle
as Oi = (Istatic

i , xi, yi, θi, wi, li). The binary variable Istatic
i

indicates whether the obstacle is static (1) or movable (0).
(xi, yi, θi) ∈ SE(2) defines the pose of the obstacle relative
to the robot’s initial position A (typically the origin), and
(wi, li) defines the box’s width and length respectively. The
set of all obstacles in the environment with N obstacles is
O = {Oi}Ni=1.

IV. PROPOSED METHOD

A. Low-level Locomotion Controller

The locomotion controller πloc [25] is a neural network
policy trained in an obstacle-free environment using Proxi-
mal Policy Optimization (PPO) [26]. πloc tracks velocity and
gait commands, enabling the robot to walk at desired speeds
while maintaining a commanded gait. The velocity com-
mands vdes are specified within the robot’s SE(2) frame. Gait
commands b include the robot’s stepping frequency, body
height, and stance. The input observations oloc to the policy
are the gravity vector g in the robot’s frame, the robot’s
proprioceptive states – joint positions q, joint velocities q̇, the
previous action taken aloc

prev, and a latent physics parameter
zphys. The commands c = (vdes, b) are also provided as input.
The output action aloc is the target joint position for each of
the robot’s joints. These target joint positions are converted
to joint torques τ using the robot’s built-in PD controller. πloc
uses a student-teacher framework [22], to adapt to different
environment conditions as encoded in zphys. In summary, the
neural-network policy πloc returns the following action at
each time t: aloc

t = πloc(gt, qt, q̇t, z
phys
t , aloc

t−1; ct).

B. High-level Navigation Policy

A navigation policy πnav is trained using PPO in cluttered
corridors to provide a sequence of velocity commands vdes =
(vx, vy, vω) ∈ R3 to the low-level controller πloc so that the
robot successfully navigates from its initial position to the
goal region. The commanded gait b is fixed to a trotting
gait due to its simplicity and stability. πnav takes as input
a history H of observations onav and outputs a desired
velocity command vdes. The observation contains the SE(2)
pose of the robot ρ, the robot’s velocity vector (ẋ, ẏ), and
the previous action vdes

prev output from the policy. At any
time-step t, the high-level navigation policy outputs: vdes

t =



Fig. 2: (Left) Environment setup in reality (top) and simulation (bottom), best viewed in color. The robot’s workspace is bounded in a box of dimensions
wenv × lenv, and the goal region (purple) is defined as the set of all locations that satisfy {x > K}, i.e., all locations that are beyond K meters in the
direction of the robot’s initial orientation. The yellow long obstacle is movable, while the red obstacle is static. The robot has to move the yellow box
in front of it to reach the goal region. (Middle-Right) A hierarchical control policy is executed to navigate the robot so it may explore the environment’s
properties and successfully reach the goal region. Concurrently, the proposed obstacle reconstruction module (ORM) is a Transformer neural network that
uses localization and proprioception history from the robot to predict object position and dimensions through interaction.

πnav(⟨ρt, ẋt, ẏt, v
des
t−1⟩tt−H). The history H of proprioceptive

observations (joint positions and velocities of the robot)
enables the policy to interpret and remember interactions
with the obstacles, which in turn aids in navigation. The
reward function fuses (a) goal reaching reward: a sparse
reward for the robot on reaching the goal region; (b) distance
penalty: a penalty on the robot’s distance from the goal
region; (c) time penalty: incurred for every control step the
robot does not reach the goal; (d) wall collision penalty:
when the robot gets close to the walls; (e) heading penalty:
if the robot’s heading angle is beyond the threshold θthresh
with respect to its initial heading.

C. Dataset Curation

The Obstacle Reconstruction Module (ORM) is trained on
a dataset collected by running the navigation policy πnav in a
randomly generated simulation environment (see Sec. V for
details). The execution is terminated when the robot reaches
the goal region, or after Tmax time-steps. We use tgoal to
denote the time-step when the goal is reached. The robot’s
proprioceptive state s and pose ρ, as well as the obstacles
states O, are recorded at every time step. We define a
trajectory γ = {st, ρt,Ot}t=T

t=0 as a sequence of observations,
where T = min(tgoal, Tmax). A dataset D is a collection of
trajectories γj under M different navigation policies πi

nav, i ∈
{1, 2, ..,M} in randomly generated cluttered environments.

Multiple sources of bias may arise in collecting D:
Navigation policy bias. In an environment with multiple
homotopic paths, πnav may be biased towards a single ho-
motopy class (e.g., trajectories that favor the right-hand side
of the environment). This may lead to recorded trajectories
having limited robot-obstacle interactions.
Early termination bias. In different trajectories, the robot
interacts with different numbers of obstacles in the scene.
The trajectories collected from randomly generated environ-
ments are not uniformly divided with respect to the obstacle
interaction modes, leading to an unbalanced dataset. For
example, trajectories terminate faster in an environment with
a single movable obstacle than in environments with multiple

obstacles, increasing the number of trajectories recorded for
the former.
Contact mode bias. Each trajectory can be categorized into
different contact modes, e.g., no contact with any obstacle,
direct contact with a static/movable obstacle, or direct contact
with a movable obstacle along with indirect static obstacle
contact. Imbalances between the modes can lead to bias.

To ensure a high-quality dataset, the curation procedure
collects trajectories from M different navigation policies to
help cover multiple possible homotopic classes, increasing
the diversity of interactions with the obstacles. Pruning
trajectories based on contact mode frequency helps mitigate
the early termination and contact mode biases.

D. Obstacle Reconstruction Module (ORM)

ORM is a neural network consisting of a causal Trans-
former encoder [27] followed by a fully-connected MLP

decoder that predicts a sequence of obstacle parameters
for reconstruction from a sequence of proprioception inputs
(Fig 3). This network is trained on sequences (trajectories) in
D. Its input is a sequence of proprioception data (st, ρt)

T
t=0 –

joint positions, joint velocities, torques applied on the joints,
and the robot pose in the world frame. For any sequence, let
time-step tfirst

i represent the first contact on Oi and tlast be the
time-step of the last contact the robot makes with any of the
obstacles in O. The contact window for an obstacle is thus
defined as ∆con

i = [tfirst
i , tlast]. The obstacle parameters Oi

(see Section III) are modified to include its contact window
for the sequence, Õi = (Icontact

i , Istatic
i , xi, yi, θi, wi, li). The

binary variable Icontact
i indicates whether the obstacle is in

its contact window (1), i.e. if the robot is currently pushing
against the obstacle, or not (0). The module returns as output
{Õt}t=T

t=0 , where Õt = {Õt,i}i=n
i=1 , n is the number of

obstacles in the scene and the prediction at time-step t is
a function of only the history of inputs up to time-step t in
the sequence. The segments of the output sequence not in the
contact window for each obstacle are masked, so the network
learns only during the contact windows. Contact windows
contain rich contact information for obstacle prediction.



Fig. 3: Given as input a sequence of the robot’s joint positions, velocities, applied torques, and poses (Top), the Obstacle Reconstruction Module (ORM,
middle) is a Transformer-based neural network that outputs the sizes and poses for the different movable (ground truth visualized in yellow) and static
(ground truth visualized in red) obstacles in the scene (Bottom, best viewed in color). The reconstructions for the movable and static obstacles are visualized
in orange and blue, respectively, and their corresponding Rotated Intersection Over Union (See: Section V-C) values are reported. Higher values represent
more accurate reconstructions.

The training loss for ORM is a combination of scaled
binary cross-entropy BCE losses and a mean squared error
MSE supervised learning objective. The loss function for a
single sequence with n ≤ N interacted obstacles is:

L =

n∑
i=1

1

|∆con
i |

tlast∑
t=tfirst

i

[α1 BCE(Icontact
t,i , Îcontact

t,i )

+ α2 BCE(Istatic
t,i , Îstatic

t,i )

+ α3 MSE((xt,i, yt,i, θt,i), (x̂t,i, ŷt,i, θ̂t,i))

+ α4 MSE((wt,i, lt,i), (ŵt,i, l̂t,i))].

E. System Integration

Offline Training Locomotion policy πloc is first trained using
PPO to follow velocity and gait commands. Once trained,
πloc is used only in inference mode with a fixed gait for
navigation. M navigation policies πi

nav, i ∈ {1, 2, ...,M} are
then trained using PPO in unknown cluttered environments
using the low-level control policy πloc. A balanced dataset D
of trajectories is then curated using the different navigation
policies in randomly generated cluttered environments. The
ORM is then trained with a supervised objective to partially
reconstruct the environments using only proprioception data.
Online Inference For navigating through environments with
unknown obstacles, πnav operates in inference mode, inter-
nally commanding πloc for robot locomotion. Each control
step of the navigation process captures and records the
robot’s proprioception state in a sequence, preserving a
complete history from the trajectory’s start. This sequence
feeds into the ORM, enabling partial, on-the-fly scene recon-
struction. This proposed approach provides an novel method
for real-time 2D-scene understanding during navigation.

V. EXPERIMENTS

Environment Setup For the evaluation, a 12 DoF Unitree
Go1-EDU quadruped starts at one end of a walled 4m×2m

corridor and must navigate to the goal located near the
other end of the corridor. Offline, during training, obstacles
Oi, i ∈ [1, Nmax], are generated in IsaacGym by sampling
their physical properties for each obstacle. The obstacles
are then placed in random SE(2) configurations with their
orientations fixed to 0 with respect to the robot’s initial
orientation. This may or may not block the path(s) to the
goal. When Nmax ≥ 2, the movable obstacle is placed in front
of one or more static obstacles. No obstacles are spawned
in the goal region. Domain randomization of the obstacle’s
physical parameters aims to reduce the sim2real gap of both
the navigation policy and the obstacle prediction module.

Fig. 4: Examples of Easy (Left), Medium (Middle) and Hard (Right) simu-
lated (top) and real-world (bottom) scenarios considered in the evaluation.

Online, during evaluations, the environments are cate-
gorized into easy, medium and hard with respect to the
navigation task, where the number of obstacles N is set to
1, 2, and 3 respectively. In the easy environments, the robot
may only directly interact with the obstacle, whereas, in the
medium and hard ones, the robot may have both direct and
indirect obstacle interactions.
Training Details The locomotion and navigation policies,
πloc and πnav, are trained on 4096 parallel IsaacGym environ-
ments for 30K and 1K iterations, respectively. πloc is trained
to follow velocity commands in the range [−0.4, 0.4]m/s
at a step frequency of 50Hz. Outside this range, the robot
is prone to falling when interacting with obstacles while



executing πnav. The input to πnav is the history of observations
and actions, where the history is a moving window with a
maximum length of H = 30s and the maximum episode
length Tmax = 60s. πnav provides commands to πloc at a step
frequency of 25Hz. For better sim-to-real transfer of πnav, the
robot parameters are randomized during training. Multiple
versions of πnav are trained on different seeds using different
combinations of reward functions mentioned in Section IV-B.

The Obstacle Reconstruction Module (ORM) is trained
on a dataset D of 180K trajectories curated from three dif-
ferent navigation policies πi

nav, i ∈ {1, 2, 3}. The maximum
number of obstacles spawned in the environment Nmax = 3.
The Transformer Encoder comprises four self-attention
blocks with two attention heads each, followed by a two-
layer MLP decoder. The inputs to the network are projected
to learnable embedding of 512 dimensions with positional
information. This network is trained for 20 epochs on an
NVIDIA RTX A4500 with 20GB of GPU memory.
Evaluation Metrics The following metrics measure the
performance of the ORM. They are calculated for each
obstacle Oi independently at the final time-step tfinal in the
contact time window ∆con

i (See Section IV-D).
Rotated Intersection over Union (IoU) evaluates how
well the predicted obstacle representation overlaps with the
ground-truth. For a single obstacle Oi at time-step t, it is
defined as,

IoU(Ot
i , Ôt

i) =
Area(Geom(Ot

i) ∩ Geom(Ôt
i))

Area(Geom(Ot
i) ∪ Geom(Ôt

i))
,

where Geom(Oi) is the geometry of the obstacle Oi in the
workspace. The IoU for obstacle Oi at the final time-step
tfinal in the contact window ∆con

i is defined as IoUfinal
i =

IoU(Otfinal
i , Ôtfinal

i ).
Absolute Error For each obstacle oi at time-step t, (i)
Obstacle pose error is the the absolute error of the predicted
SE(2) pose of the obstacle. (ii) Obstacle shape error is
the absolute error for the dimensions of the obstacle. The
absolute error at the final time-step tfinal in the contact
time window ∆con

i is defined as Efinal
i = |Otfinal

i − Ôtfinal
i |. It

corresponds to the individual absolute errors in the position
of the object in each axis, in its rotation, and length.

VI. RESULTS

A. Simulation Results

Category Type
Metrics

IOU ↑ Pose Errors ↓
Shape ↓

x y θ

Easy
Movable 0.473 0.135 0.101 0.198 0.183

Static 0.501 0.087 0.104 - 0.172

Medium
Movable 0.496 0.115 0.095 0.201 0.162

Static 0.331 0.430 0.169 - 0.186

Hard
Movable 0.481 0.128 0.108 0.214 0.172
Static 1 0.432 0.091 0.138 - 0.117
Static 2 0.404 0.094 0.151 - 0.120

TABLE I: Quantitative results evaluating the proposed method in simulation.
Performance outcomes are averaged across 1000 trials of Easy, Medium, and
Hard benchmarks that each contain Nmax = 1, 2, 3 obstacles, respectively.

Table I reports evaluations of the ORM using the afore-
mentioned metrics on 1000 Easy, 1000 Medium and 1000
Hard benchmarks. Across the benchmarks, the ORM returns
a reasonably accurate estimation of the geometry of the
obstacles evidenced by the average IoU at the end of the
robot’s contact as demonstrated qualitatively in Fig. 5. In
Medium scenarios with a static obstacle, the robot may not
be in direct or indirect contact with the static obstacle for a
sustained time-period while completing the navigation task.
Thus, the IoU reported in this case is relatively lower for the
static obstacle. The reported reconstruction for the movable
obstacle is surprisingly more accurate in the Medium and
Hard scenarios. The reason is that the robot is in direct
contact with the obstacles for longer in the Medium and
Hard benchmarks, which leads to more accurate predictions.
The static obstacle’s measured IoU is higher in the Hard
benchmark than the Medium benchmark because there is a
higher chance of direct interaction with one or the other static
obstacle while navigating. The absolute errors further empha-
size the trend observed in the IoU. Since the orientation of
the static obstacles is fixed across the different benchmarks,
their orientation error is omitted.

B. Real Robot Results

Table II evaluates the ORM on independent trials of 20
Easy, 20 Medium and 5 Hard benchmarks on the real-
world setup. For each independent trial, a different navigation
policy is uniformly sampled from {πi

nav}i=3
i=1.

Categ. Type
Metrics

IOU ↑ Pose Errors ↓
Shape ↓

x y θ

Easy
Movable 0.271 0.495 0.151 0.333 0.341

Static 0.449 0.095 0.162 - 0.099

Medium
Movable 0.277 0.340 0.195 0.407 0.303

Static 0.212 0.185 0.230 - 0.225

Hard
Movable 0.371 0.203 0.106 0.182 0.282
Static 1 0.210 0.295 0.408 - 0.192
Static 2 0.198 0.220 0. 494 - 0.157

TABLE II: Quantitative evaluation of PROBE on the real robot. Performance
outcomes are averaged across 10 independent trials with a movable obstacle
and 10 trials with a static obstacle in the Easy category, followed by 20 trials
with both obstacles in the Medium category, and 5 trials with three obstacles
in the Hard Category.

The results from the real-world trials confirm the trends
observed in the simulation trials. However, multiple factors
contribute to a certain decline in the measured metrics – the
physical properties of the obstacles, e.g., mass, friction, and
restitution, are assumed to be uniformly distributed across
the obstacle geometry in simulation, but this is not the case
in the real-world setup. The real-world obstacles are also not
perfectly box-shaped, contributing to a distribution mismatch
between the obstacles and the robot compared to those in the
simulation. The Hard benchmark contains trajectories that
have very minimal direct interaction with the static obstacles
in the environment and this reflects in the measured IoU.
This is comparable to the evaluated IoU for the Medium
benchmark.



Fig. 5: An example execution of PROBE with a real Unitree Go1, best viewed in color. (Top) Snapshots of the experiment at different timestamps. (Bottom)
Obstacle reconstruction returned by PROBE. As the experiment progresses, the robot (green) comes into direct contact with the movable obstacle (ground
truth pose in yellow) and indirect contact with the static obstacles (ground truth poses in red). The predictions during the contact window for the movable
and static obstacles are visualized in orange and blue, respectively.

Fig 5 showcases an example execution of PROBE from a
real robot trial on a Hard benchmark. The robot makes first
contact with the movable obstacle at t = 2s and returns an
initial estimate of its pose and shape. At t = 8s, πnav directs
the robot to the other end of the movable box, creating an
opening. As the robot continues pushing the movable box,
it enables the ORM to hypothesize about a possible static
obstacle at t = 10.4s. When the movable box can no longer
be pushed at around t = 12s, the ORM reconstructs the
second static obstacle nested behind the first one. However,
since it does not have enough information about how it has
manipulated the movable obstacle, the corresponding IoU
decreases. The final reconstructions are obtained at the end
of the contact window (t = 14s).

Fig. 6: A: {q}, B: {q, q̇}, C: {q, q̇, τ}, D: {q, q̇, τ, ρ}, E: {τ, ρ}. The plots
show an ablation study on the ORM. The ORM trained with different inputs
affects the reconstruction performance measured with the IoU metric.

Ablation Studies. Fig 6 evaluates the importance of the
different inputs provided to the ORM using the IoU metric
on the same evaluation dataset as Table I. For the ablation
study the ORM is trained on environments with Nmax =
2. The networks A,B,C,D receive as input the history
of joint positions q, joint velocities q̇, commanded joint
torques τ , and the robot pose ρ incrementally. Network E
receives as input only the commanded joint torques and the
robot’s pose. For the movable obstacles, whose features are
indicated by the changes in the robot’s pose relative to the

commanded joint torque, networks D and E perform best
in accurately reconstructing them. The IoU of the static
obstacles displays a marked improvement when the joint
torques are introduced as input. Removing the joint position
and velocity information significantly declines reconstruction
performance, emphasizing their importance.

VII. CONCLUSION

Robots that navigate unknown environments can benefit
from reconstructing their surroundings for planning their
actions accordingly. PROBE is a novel method for 2D
scene reconstruction for legged robots with the objective of
understanding the properties of obstacles. While standard
reconstruction methods rely on vision, PROBE uses only
a history of proprioceptive data. This sensing modality
is useful in places where vision is not helpful, such as
those encountered in search and rescue missions or when
obstacles are partially or fully occluded. PROBE employs a
transformer-based obstacle reconstruction module to map the
history of proprioceptive data into an encoded representation
of the obstacles in the environment. The network is trained in
simulation. Experiments are carried out to first evaluate the
proposed framework in simulation and then on a real Unitree
Go1 robotic dog and objects. The evaluation indicates that
PROBE can not only detect object locations and sizes but
also whether they are movable or static. It can also detect
the properties of fully occluded objects by interacting with
the occluding frontal objects.
PROBE, however, has some limitations that are worth

investigating in future works. Firstly, all experiments were
conducted in environments that contained only box-shaped
objects. It is interesting to extend and evaluate PROBE on
other forms of objects. Furthermore, PROBE was not tested
on identifying other physical properties of objects beyond
their geometries and whether they are movable. Finally,
combining PROBE with reconstruction methods that rely on
other modalities, such as touch sensing, can improve the
ability to reconstruct scenes.



REFERENCES

[1] G. C. Haynes, D. Stager, A. Stentz, J. M. Vande Weghe, B. Zajac,
H. Herman, A. Kelly, E. Meyhofer, D. Anderson, D. Bennington,
J. Brindza, D. Butterworth, C. Dellin, M. George, J. Gonzalez-Mora,
M. Jones, P. Kini, M. Laverne, N. Letwin, E. Perko, C. Pinkston,
D. Rice, J. Scheifflee, K. Strabala, M. Waldbaum, and R. Warner,
“Developing a Robust Disaster Response Robot: CHIMP and the
Robotics Challenge,” J. Field Robot., vol. 34, no. 2, pp. 281–304,
Mar. 2017. [Online]. Available: https://doi.org/10.1002/rob.21696

[2] C. Atkeson, B. P. Wisely Babu, N. Banerjee, D. Berenson, C. P. Bove,
X. Cui, M. Dedonato, R. Du, S. Feng, P. Franklin, M. Gennert,
J. P. Graff, P. He, A. Jaeger, J. Kim, K. Knoedler, L. Li, C. Liu,
X. Long, and X. Xinjilefu, “What Happened at the DARPA Robotics
Challenge Finals,” Springer Tracts in Advanced Robotics, pp. 667–
684, 04 2018.

[3] M. Johnson, B. Shrewsbury, S. Bertrand, T. Wu, D. Duran, M. Floyd,
P. Abeles, D. Stephen, N. Mertins, A. Lesman, et al., “Team IHMC’s
lessons learned from the DARPA robotics challenge trials,” Journal of
Field Robotics, vol. 32, no. 2, pp. 192–208, 2015.

[4] J. Luo, Y. Zhang, K. Hauser, H. A. Park, M. Paldhe, C. G. Lee,
M. Grey, M. Stilman, J. H. Oh, J. Lee, et al., “Robust ladder-climbing
with a humanoid robot with application to the darpa robotics chal-
lenge,” in Robotics and Automation (ICRA), 2014 IEEE International
Conference on. IEEE, 2014, pp. 2792–2798.

[5] G. Pratt and J. Manzo, “The DARPA Robotics Challenge,” IEEE
Robotics & Automation Magazine, vol. 20, no. 2, pp. 10–12, 2013.

[6] M. Stilman, “Navigation among movable obstacles,” Ph.D. disserta-
tion, Carnegie Mellon University, Pittsburgh, PA, October 2007.

[7] J. Varley, C. DeChant, A. Richardson, J. Ruales, and P. K. Allen,
“Shape completion enabled robotic grasping,” 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp.
2442–2447, 2016.

[8] X. Yan, L. Lin, N. J. Mitra, D. Lischinski, D. Cohen-Or, and
H. Huang, “Shapeformer: Transformer-based shape completion via
sparse representation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022.

[9] C. Song and A. Boularias, “Inferring 3d shapes of unknown rigid
objects in clutter through inverse physics reasoning,” IEEE Robotics
and Automation Letters (RA-L), vol. 4, no. 2, 2019.

[10] J. Bimbo, A. S. Morgan, and A. M. Dollar, “Force-based simultaneous
mapping and object reconstruction for robotic manipulation,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 4749–4756, 2022.

[11] A. Bicchi, J. K. Salisbury, and D. L. Brock, “Contact sensing from
force measurements,” The International Journal of Robotics Research,
vol. 12, pp. 249 – 262, 1990.

[12] N. Kurita, S. Sakaino, and T. Tsuji, “Whole-body force sensation
by force sensor with end-effector of arbitrary shape,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2012, Vilamoura, Algarve, Portugal, October 7-
12, 2012. IEEE, 2012, pp. 5428–5433. [Online]. Available:
https://doi.org/10.1109/IROS.2012.6386064

[13] H. Liu, K. Nguyen, V. Perdereau, J. Bimbo, J. Back, M. Godden,
L. D. Seneviratne, and K. Althoefer, “Finger contact sensing
and the application in dexterous hand manipulation,” Auton.
Robots, vol. 39, no. 1, pp. 25–41, 2015. [Online]. Available:
https://doi.org/10.1007/s10514-015-9425-4

[14] A. D. Luca, A. O. Albu-Schäffer, S. Haddadin, and G. Hirzinger,
“Collision detection and safe reaction with the dlr-iii lightweight ma-
nipulator arm,” 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1623–1630, 2006.

[15] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and
mapping: part i,” IEEE robotics & automation magazine, vol. 13, no. 2,
pp. 99–110, 2006.

[16] C. Stachniss, J. J. Leonard, and S. Thrun, “Simultaneous localization
and mapping,” Springer Handbook of Robotics, pp. 1153–1176, 2016.

[17] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha,
“Visual simultaneous localization and mapping: a survey,” Artificial
intelligence review, vol. 43, pp. 55–81, 2015.

[18] B. Saund, S. Choudhury, S. S. Srinivasa, and D. Berenson, “The
blindfolded robot: A bayesian approach to planning with contact
feedback,” in International Symposium of Robotics Research, 2019.

[19] A. Albini, F. Grella, P. Maiolino, and G. Cannata, “Exploiting dis-
tributed tactile sensors to drive a robot arm through obstacles,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 4361–4368, 2021.

[20] A. M. Gruebele, M. A. Lin, D. Brouwer, S. Yuan, A. C. Zerbe, and
M. R. Cutkosky, “A stretchable tactile sleeve for reaching into cluttered
spaces,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
5308–5315, 2021.

[21] G. S. Martins, R. P. Rocha, F. J. Pais, and P. Menezes, “Clusternav:
Learning-based robust navigation operating in cluttered environments,”
in 2019 International Conference on Robotics and Automation (ICRA),
2019, pp. 9624–9630.

[22] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid
motor adaptation for legged robots,” 2021. [Online]. Available:
https://arxiv.org/abs/2107.04034

[23] A. Agarwal, A. Kumar, J. Malik, and D. Pathak, “Legged locomotion
in challenging terrains using egocentric vision,” 2022. [Online].
Available: https://arxiv.org/abs/2211.07638

[24] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal,
“Rapid locomotion via reinforcement learning,” 2022. [Online].
Available: https://arxiv.org/abs/2205.02824

[25] G. B. Margolis and P. Agrawal, “Walk these ways: Tuning robot
control for generalization with multiplicity of behavior,” 2022.

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[27] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

https://doi.org/10.1002/rob.21696
https://doi.org/10.1109/IROS.2012.6386064
https://doi.org/10.1007/s10514-015-9425-4
https://arxiv.org/abs/2107.04034
https://arxiv.org/abs/2211.07638
https://arxiv.org/abs/2205.02824

	Introduction
	Related Work
	Problem and Environment Setup
	Proposed Method
	Low-level Locomotion Controller
	High-level Navigation Policy
	Dataset Curation
	Obstacle Reconstruction Module (ORM)
	System Integration

	Experiments
	Results
	Simulation Results
	Real Robot Results

	Conclusion
	References

